

www.roadsafety.unc.edu

Collaboration: University of Tennessee, Knoxville

May 16, 2024

R44 Project Team

UT Knoxville

- Dr. Asad Khattak
- Dr. Subhadeep Chakraborty
- Dr. Iman Mahdinia
- Sheikh M. Usman
- + Contributions by several students, especially Dr. Numan Ahmed, Dr. Ramin Arvin, & Mr. Riley Tavassoli

R44 Project Outcomes

- Usman, S.M., Asad Khattak, Subhadeep Chakraborty, Iman Mahdinia, and Riley Tavassoli (2024). Detection of Distracted Driving through the Analysis of Realtime Driver, Vehicle and Roadway Volatilities. Forthcoming *Journal of Transportation Safety and Security*.
- Ahmad, Numan, Ramin Arvin, and Asad Khattak, (2023). How is the duration of distraction related to safety-critical events? Harnessing naturalistic driving data to explore the role of driving instability. *Journal of Safety Research*, 27.
- Ahmad, Numan, Ramin Arvin, and Asad J Khattak (2023). Exploring pathways from driving errors and violations to crashes: the role of instability in driving. *Accident Analysis & Prevention*, 179, 106876.
- Ahmad Numan, Asad Khattak, and Hamparsum Bozdogan (2023). Predicting safety-critical events using driver behaviors and performance: Application of machine learning. Transportation Research Board, Paper TRBAM-23-00144.
- Ahmad Numan, "Role of Human Factors, Driving Instability, and Roadway Environment in Safety Critical Events: Safe System Approach." Ph.D. dissertation, The University of Tennessee, 2021. <u>https://trace.tennessee.edu/utk_graddiss/6961</u>

Overview: Research Objectives

The project aims to understand detection of driver impairment using streaming biometric information

The key project objectives are:

- Collect unique high-frequency multi-dimensional large-scale data using sensors that monitor the driver, vehicle, and roadways.
- Harness the data
 - Quantify variations in driver biometrics and behavior, vehicle kinematics, & roadway/env. conditions
 - Utilize the concept of volatility as a leading indicator of crash risk
 - Analyze correlations of driver biometrics and driving style with driver impairment and crash risk
- Develop algorithms to identify driving impairment by monitoring data streams emanating from the driver, vehicle, and roadway in real-time to provide feedback and warnings to drivers & surrounding vehicles

Overview: Research Questions

The research questions related to distracted driving events are:

- Can driver distraction be identified using biometric and vehiclebased sensors in different driving scenarios?
- How can driving events be classified as normal and distracted/impaired based on volatility measures in data streams?
- How is prolonged distracted driving associated with driving instability and safety-critical events?
- What are the mechanisms for driving errors and violations that lead to safety-critical events?

R44 Project: Studies Conducted

• Study I:

Detection of Distracted Driving through the Analysis of Real-time Driver, Vehicle, and Roadway Volatilities.

• Study II:

How is the Duration of Distraction-related to safety-critical events? Harnessing naturalistic driving data to explore the role of driving instability.

- Study III:
- Exploring Pathways from Driving Errors and Violations to Crashes: The Role of Instability in Driving.
- Study IV:
- Predicting Safety-Critical Events using Driver Behaviors and Performance: Application of Machine Learning.

Study 1 (Project R44)

Detection of Distracted Driving through the Analysis of Real-time Driver, Vehicle, and Roadway Volatilities

Collaborative Sciences Center for ROAD SAFETY May 16, 2024

Introduction

Types of Driving Distraction

- Visual
- Cognitive
- Auditory
- Physical

- Detection Response Task (DRT) used to assess the attentional effect of secondary tasks on driving performance
- Driver response to visual or tactile stimuli presented to drivers at random intervals provide a measurable indicator of distraction

Study Objective

To detect events of distracted driving under normal and different distracted driving

- Driving simulator was used
- Scenarios were developed using the visual DRT (grid of arrows) with varying difficulty levels

Driver's view inside the vehicle

Driving simulator hardware

Grid of Arrows

Collaborative Sciences Center for ROAD SAFETY May 16, 2024

Study Framework

- Driving Simulation done on Multimodal Virtual Reality Simulator
- Captured Driver Biometrics, Vehicle Kinematics, and Roadway Surroundings
- 4x4, 5x5, 6x6, 8x8 grids of arrows used as distraction scenarios

Overall study framework

Methodological Framework

- Data Collected (N=617)-Dependent Variable
 - Level of Distraction (Undistracted, Mild, Moderate, Significant, Severe Distraction)
- Estimated Panel Ordered Logit Model
 - Ordered nature of the response variable
 - Repeated observations over time for the same subjects
- Applied Machine Learning-Random Forest
 - Captures complex non-linear behavior
 - Prediction of Distraction is important
- Applied Artificial Neural Network
 - Identification of intricate patterns in multidimensional data
 - Ability to learn from raw data with minimal preprocessing

Descriptive Statistics

Means of volatility measures in driver biometrics, vehicle kinematics, and roadway surroundings increase with higher levels of distraction

Volatility	Undist	tracted	Μ	lild	Mod	lerate	Signif	ïcant	Sev	ere
Measures	N =	204	Distra	action	Distr	action	Distra	ction	Distra	ction
			N=	123	N = 120		N = 85		N = 85	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Mean	SD
CV-Eye Movement	0.40	0.330	0.68	0.333	0.79	0.29	0.83	0.28	0.94	0.27
CV-Speed	0.06	0.05	0.08	0.06	0.10	0.068	0.11	0.07	0.12	0.11
MAD- Acceleration	1.47 1	1.44	1.56	1.53	1.63	1.55	1.86	1.73	1.95	2.00
CV-Centre Distance	0.15	0.14	0.20	0.18	0.34	0.19	0.35	0.21	0.38	0.23
CV-Front Distance	0.08	0.10	0.09	0.105	0.094	0.106	0.11	0.11	0.13	0.13
CV-Back Distance	0.04	0.07	0.056	0.08	0.059	0.10	0.07	0.15	0.10	0.15

Study Results

Ordered Logit Model

• Training Data (N = 507)

 Volatility indicators found statistically significant

Variables	Coefficient	t-stat	p-	Mar	ginal Effects	(Level of	f Distraction)
			value					
				Undistracted	Mild	Moder ate	Significant	Severe
CV-Eye Movement	6.428	10.68	0.000	-0.8865	-0.0612	0.1886	0.2816	0.4775
CV-Speed	2.223	4.08	0.000	-0.3065	-0.0211	0.0652	0.0974	0.1651
CV-Centre Distance	4.051	6.99	0.000	-0.5586	-0.0385	0.1188	0.1774	0.3009
CV-Back Distance	1.747	2.04	0.041	-0.2409	-0.0166	0.0512	0.0765	0.1297
Eye Movement Threshold s	1.142	2.05	0.041	-0.1574	-0.0108	0.0335	0.0500	0.0848
μ_1				-0.9	983			
μ2				0.0	668			
μ₃				0.9	734			
μ4				2.0	07			
Summary								
Statistics								
Ν				50)7			
LL at convergence				-627.	4721			
LL at null				-770.	3974			
Pseudo R ²				0.1	.85			
χ ² (5)				285	.85			
$Prob > \chi^2(5)$				0.0	000			
AIC				1274	.944			
BIC				1317	.229			

Study Results

- High importance: Coefficients of Variation in Eye Movements;
 Vehicle Distance from Centerline; & the following vehicle
- Random Forest: Highest Prediction Accuracy of 77.27%

Artificial Neural Network

Variable Importance Plot -Random Forest

		Rand	om Forest			
Observed		Predi	cted Outcom	es		Total
Outcomes	Undistracted	Mild	Moderate	Significant	Severe	
		Distraction	Distraction	Distraction	Distraction	
Undistracted	29	5	2	1	1	38
Mild	2	11	1	0	1	15
Moderate	0	4	19	2	1	26
Significant	0	2	3	10	0	15
Severe	0	0	0	0	16	16
Total	31	22	25	13	19	
Performance						
Metrics						
Accuracy			77.27%			
Precision	0.9354	0.5000	0.7600	0.7692	0.8421	
Recall	0.7631	0.7333	0.7307	0.6667	1.0000	
F1 Score	0.8405	0.5946	0.7451	0.7142	0.9143	

Confusion Matrix- Random Forest

Future Research

- Variations in driver biometrics (driver gaze, eye openness), vehicle kinematics, & surrounding → leading distraction indicators
- Findings emphasize
 - Development of proactive safety measures
 - Driver feedback systems safety warnings, control assists, & automation
- Development of algorithms-promising results of Random Forest classifier in vehicles to detect distracted driving

Study II (Project R44)

How is the Duration of Distraction-related to Safety-Critical Events? Harnessing Naturalistic Driving Data to explore the role of Driving Instability

ROAD SAFETY May 29, 2024

Introduction

- Distracted driving is a critical safety concern
- At 50 mph, sending/reading a text for 5 seconds is equivalent to driving the length of a football field (360 ft) with eyes closed
- Fundamental understanding of how distractions lead to crashes is needed to develop appropriate countermeasure strategies

Data Used

- The study analyzed a subsample of the SHRP-2 naturalistic driving data
 - Provides real-world data on pre-crash driving behaviors
 - Secondary tasks (along with their duration)
 - Vehicle kinematics
 - Roadway and environment variables

Objectives and Methodology

- To understand how distraction duration relates to SCEs
- To capture any non-linear effects of distraction duration
- Path Analysis applied to safety data
- Direct & Indirect Effects of distracted driving captured in the study

Modeling results: Joint estimation

		Iodel (COV o	of Speed)		Ordered Probit Model (Event Outcome)					
Independent Variables		tetat	ME 1	ME 2	ME 2	Cooff	tetat	MEs		
		ו-זומו	MIL-I	NIE-2	MIL-5	coen.	ו-פומו	Baseline	Near-Crash	Crash
COV of speed						3.8125	32.14	-0.7416	0.4016	0.3400
Secondary Task Duration (seconds)	-0.0071	-3.08	-0.0055	-0.0072	-0.0041	-0.0368	-2.88	0.0072	-0.0039	-0.0033
Secondary Task Duration * Secondary Task Duration	0.0029	11.01	0.0022	0.0029	0.0017	0.0087	5.72	-0.0017	0.0009	0.0008
Speed (miles per hour)						0.0495	6.33	-0.0096	0.0052	0.0044
Speed (miles per hour) * Speed (miles per hour)						-0.0012	-5.94	0.0002	-0.0001	-0.0001
Relation to Junction (Base Category = Intersection or inte	rsection rela	ited)								-
Other (rail grade crossing, parking lot entrance or exit etc.)	-0.0329	-2.86	-0.0287	-0.0248	-0.0224					
Parking lot, within boundary	-0.0177	-0.71 ^b	-0.0156	-0.0130	-0.0122					
Driveway, alley access, etc.	-0.1324	-10.91	-0.1097	-0.1203	-0.0831					
Entrance/Exit ramp or interchange area	-0.1601	-12.93	-0.1305	-0.1522	-0.0982					
Non-junction	-0.1565	-20.47	-0.1279	-0.1479	-0.0963					
Maneuver Judgement (Base Category = Unsafe and illega	d)									-
Unsafe but legal	0.0254	1.33 ^b	0.0228	0.0162	0.0184					
Safe but illegal	-0.1108	-5.10	-0.0936	-0.0925	-0.0725					
Safe and legal	-0.1332	-11.58	-0.1112	-0.1155	-0.0856					
Traffic flow (Base Category = Divided (median Strip or ba	rrier)									
No lanes	0.2210	9.13	0.1876	0.1796	0.1461					
Not divided - center 2-way left turn lane	0.0241	2.37	0.0183	0.0265	0.0135					
Not divided - simple 2-way trafficway	0.0537	8.36	0.0417	0.0569	0.0309					
One-way traffic	0.1179	8.26	0.0952	0.1137	0.0717					
Road Surface Condition: Wet (1/0)	0.0242	3.04	0.0190	0.0248	0.0142	0.1083	2.58	-0.0211	0.0114	0.0097
Constant	0.3956	30.55								
Sigma (e. Coefficient of Variation of Speed)	0.2688	134.82								
Thresholds										
μ						2.2306	27.58			
μ2						3.1284	37.27			
Models Summary										
Rho (Correlation between residuals of the two equations)					-0.4698 (t-s	tats = -12.18	3)			
AIC					103	75.73				
BIC					105	61.14				

Note: * and ** indicate that a particular variable showed partial statistical significance and insignificance, respectively.

ME-1 which refers to both censored and uncensored observations;

ME-2 indicates probability of being uncensored; ME-3 is similar to ME-1 but based on only uncensored observations.

Path analysis results using predictive margins

Distraction duration versus Probability of Crash

Secondary Task Duration	Direct Effe Secondary Duration on	cts of Task Crash	Effects of Se Task Dura COV of S	econdary tion on Speed	Indirect Effects of Secondary Task Duration on	Total Effects of Secondary Task Duration on	
(seconds)	Predictive MEs	t- stats	Predictive MEs	t-stats	Crash through COV of Speed	Crash	
0	0.0889	15.83	0.2117	56.53	0.0720	0.1609	
1	0.0865	15.57	0.2075	67.73	0.0706	0.1571	
2	0.0856	15.37	0.2091	62.67	0.0711	0.1567	
3	0.0862	15.42	0.2163	55.33	0.0736	0.1597	
4	0.0882	15.85	0.2294	51.88	0.0780	0.1662	
5	0.0919	16.78	0.2481	51.51	0.0844	0.1763	
6	0.0974	18.33	0.2726	52.29	0.0927	0.1901	
7	0.1049	20.54	0.3029	51.88	0.1030	0.2079	
8	0.1151	22.86	0.3389	48.88	0.1152	0.2303	
9	0.1283	23.32	0.3806	43.95	0.1294	0.2577	
10	0.1455	20.33	0.4280	38.71	0.1455	0.2910	
11	0.1675	15.97	0.4812	34.11	0.1636	0.3311	
12	0.1955	12.37	0.5402	30.39	0.1837	0.3791	
13	0.2308	9.86	0.6049	27.45	0.2057	0.4365	
14	0.2750	8.18	0.6753	25.14	0.2296	0.5046	
15	0.3292	7.07	0.7514	23.30	0.2555	0.5847	
16	0.3943	6.37	0.8333	21.83	0.2833	0.6777	
17	0.4702	6.00	0.9210	20.63	0.3131	0.7833	
18	0.5549	5.92	1.0144	19.64	0.3449	0.8998	

Distraction duration versus Probability of Near-crash

Effects of condary on Near- Crash
Effects of condary on Near- Crash .2080 2033
condary on Near- Crash .2080 2033
on Near- Crash
Crash .2080 .2033
2080
2033
.2028
.2064
.2143
.2263
.2427
.2636
.2891
.3194
.3543
.3937
.4368
.4827
.5294
.5743
.6142
.6457

Path analysis results using predictive margins

TEs refer to total Effects IDE refer to indirect effects DEs refer to direct effects

Key Findings

- Instability in driving was higher in crash and near-crash events than in baselines.
- The Coefficient of Variation of speed was higher in crashes and nearcrashes than in baselines.
- Distraction duration was longer in crashes than near-crashes and baselines.
- The probability of a crash increases exponentially when the distraction duration exceeds 8 seconds.

Future Research

- Hands-free technologies (voice-activated controls, and virtual assistants) can reduce distracted driving.
- Fixed and dynamic message signs about distracted driving have the potential to reduce both distracted driving and driving instability.
- Deploying multiple vehicle technologies (e.g., forward-collision warning system and adaptive cruise control) can be help reduced driving instability and safety critical events.

Study III (Project R44)

Exploring Pathways from Driving Errors and Violations to Crashes: the Role of Instability in Driving

Colloborative Sciences Center for ROAD SAFETY May 29, 2024

Introduction

- Driver errors and violations substantially contribute to roadway crashes
- The study explores how driving errors, violations, and roadway environments impact of instability in driving speed and safety-critical events.

Data and Statistical Techniques Used

- The study analyzed a subsample of the SHRP-2 naturalistic driving study data (N=9,239)
- Analytical techniques:
 - Path analysis
 - Tobit and Ordered Probit regressions to jointly model outcomes

Study Objective

- To identify pathways from driving errors and violations in diverse roadway environments to SCEs through instability in driving speed
- Jointly estimate models that account for potential correlation between the unobserved factors associated with
 - Epoch outcomes (baseline, near-crash, and crash) and
 - Coefficient of variation "COV" of speed (instability in driving speed)

Study Conceptual Framework

Methodology

• Path Analysis

Model 1 (Tobit model): *Driving instability*: $Y_1 = \beta_0 + \beta_1 X_1 + \varepsilon_1$ Model 2 (Ordered probit) : *Event outcome*: $Y_2 = \beta_0 + \beta_2 X_2 + \gamma Y_1 + \varepsilon_2$

 Driving errors and violations → instability in driving speed (i.e., higher COV of speed) → SCEs.

Path Analysis

Modeling results: Joint Estimation

	Joint Estimation										
Independent variables		Tobit Mo	del (COV o	f Speed)		Or	Ordered Probit Model (Event Outcome)				
Independent variables	Coeff	t stat	ME 1	MED	ME 3	Coeff	t atat		MEs		
	Coen.	t-stat	INIE-1	IVIE-2	WIE-5	COEII.	t-stat	Baseline	Near-Crash	Crash	
COV of Speed						3.0065	29.14	-0.4744	0.2950	0.1794	
Drivers Errors (Base Outcome = No Driving Errors)											
Recognition Errors	0.3375	32.50	0.2636	37.16%	0.2064	1.1357	12.60	-0.1792	0.1114	0.0678	
Decision Errors	0.1998	19.60	0.1560	22.00%	0.1222	1.3889	19.06	-0.2191	0.1363	0.0829	
Performance Errors	0.3454	11.63	0.2697	38.03%	0.2113	1.9086	10.34	-0.3011	0.1873	0.1139	
Violations	0.0647	6.57	0.0505	7.12%	0.0396	0.8082	13.43	-0.1275	0.0793	0.0482	
Physical Conditions	0.0391*	1.83*	0.0306*	4.31%*	0.0239*	0.7659	6.02	-0.1208	0.0751	0.0457	
Experience or Exposure	0.2296	5.04	0.1793	25.28%	0.1404	1.7344	7.36	-0.2737	0.1702	0.1035	
Roadway Locality (Base = Interstate)		_		_							
Open Country or Open Residential	0.0662	6.86	0.0517	7.29%	0.0405						
Moderate Residential	0.1154	15.16	0.0901	12.71%	0.0706						
School	0.1384	11.73	0.1081	15.24%	0.0847						
Business/Industrial	0.1417	20.15	0.1107	15.60%	0.0867						
Urban	0.2376	15.39	0.1856	26.17%	0.1454						
Bypass or Divided Highway with traffic signals	0.0721	4.96	0.0563	7.94%	0.0441						
Others (e.g., church, playground, and Campground)	0.1573	8.86	0.1228	17.32%	0.0962						
Intersection Influence (Base = No intersection influence)											
Interchange influence	0.1143	8.10	0.0893	12.59%	0.0699						
Stop sign or traffic signal influence	0.1907	26.57	0.1490	21.00%	0.1167						
Uncontrolled intersection influence	0.1646	12.47	0.1285	18.13%	0.1007						
Parking lot or driveways influence	0.2434	20.84	0.1901	26.80%	0.1489						
Others (e.g., crosswalk, railroad crossing, roundabouts)	0.1855	8.44	0.1449	20.43%	0.1135						
Secondary task duration	0.0015*	1.56*	0.0012*	0.16%*	0.0009*	0.0258	4.40	-0.0041	0.0025	0.0015	
Level of Service (Base Category = C to F)											
LOS A: Free flow traffic condition	-0.1131	-13.41	-0.0883	-12.45%	-0.0692						
LOS B: Traffic Flow with some restriction	-0.1094	-11.81	-0.0855	-12.05%	-0.0669						
Constant	0.1354	15.06									
Sigma (e. Coefficient of Variation of Speed)	0.2312	135.66									
Thresholds					_	_					
μ						2.0769	69.51				
μ2						3.3533	67.88				
Models Summary											
ρ (Rho)				-	0.3852 (t-sta	ts = -12.82)					
Number of observations					9.23	39					
AIC					5875.5	5970					

All driving errors and violations increase driving instability which in turn increases crash risk

Note: * and ** indicate that a particular variable showed partial statistical significance and insignificance, respectively.

ME-1 which refers to both censored and uncensored observations;

ME-2 indicates probability of being uncensored; ME-3 is similar to ME-1 but based on only uncensored observations.

Key Findings-Graphic

Key Findings

- All five driving error types, and violations were associated with higher instability in driving speed (COV of speed).
- **Performance errors** exhibit the strongest positive correlation with crash risk, followed by **experience errors**, decision errors, and recognition errors.
- Instability in driving speed is significantly higher in urban areas, business/industrial locations, and school zones compared to driving on interstates.
- All driving errors and violations not only contribute to SCEs directly but also indirectly through instability in driving speed.

Future research

- Forward-collision warning systems, adaptive cruise control, lane tracking systems, and lateral vehicle detection system can reduce one or more driving errors.
- Dilemma zone mitigation systems have the potential to reduce a significant percentage of violations.
- Awareness campaigns and mandatory training programs for drivers can reduce performance errors and experience errors.

Study IV (Project R44)

Predicting Safety-Critical Events using Driver Behaviors and Performance: Application of Machine Learning.

Collaborative Sciences Center for ROAD SAFETY May 29, 2024

Introduction

- Human factors give rise to more than 90% of road traffic crashes
- With recent advancements in machine learning (ML) and the availability of detailed Naturalistic Driving Study (NDS) data collected through the SHRP-2 program, new avenues for predicting SCEs can be explored
- Focus on real-time prediction of SCEs using driving errors and violations, distraction duration, driving instability.
- Data Used
- The study analyzed a subsample of the SHRP-2 NDS data.
- Sample Size = 9,237 observations

Study Objective

- To enhance predictive accuracy by leveraging the unique SHRP2-NDS data
 Data provides dynamic pre-crash information on driving behavior and performance
- To deepen the understanding of the connection between pre-crash driving behavior, performance, and SCEs.
- To identify the most accurate model or method for real-time prediction of SCEs.

Methodology

Conventional Statistical Techniques

- Ordered Probit Regression
 Machine Learning Methods
- K-Nearest Neighbors
- Naïve Bayes
- Gradient Boosting Decision Tree

Modeling Results: Estimation of Ordered Probit Model

Key Explanatory Variables	Coeff	arginal				
			Effects*100)			
Measures of Volatility			Baseline	Near-	Crash	
				Crash		
CV of Speed	0.956	9.97	-11.74	6.57	5.17	
CV of Deceleration	1.107	13.25	-13.59	7.61	5.98	
CV of Negative Jerk	0.214	2.76	-2.63	1.47	1.16	
Secondary Task Duration (seconds)	0.032	4.18	-0.39	0.22	0.17	
Mean Travel Speed (miles per hour)	-0.022	-4.96	0.26	-0.15	-0.12	
Driving Errors (Base = no driving error))					
Recognition Error	1.681	22.49	-20.64	11.55	9.08	
Decision Error	1.867	26.13	-22.93	12.84	10.09	
Performance Error	2.544	11.91	-31.24	17.49	13.75	
Violation	1.009	13.29	-12.39	6.94	5.45	
Physical Condition-related Error	0.978	6.19	-12.01	6.72	5.29	
Experience or Exposure Error	1.781	5.87	-21.86	12.24	9.62	
Intersection Influence (Base = no interse	ction influ	uence)				
Interchange Influence	0.785	7.76	-9.64	5.39	4.24	
Stop Sign or Traffic Signal Influence	0.247	4.03	-3.03	1.70	1.33	
Uncontrolled Intersection Influence	0.593	6.38	-7.28	4.07	3.20	
Parking Lot or Driveway Entrance/Exit	0.755	8.80	-9.27	5.19	4.08	
Other Intersection Influence	0.560	3.59	-6.87	3.85	3.02	
Roadway Environment						
Urban area indicator (1/0)	0.319	3.08	-3.92	2.20	1.73	
Moderate Residential (1/0)	-0.203	-3.32	2.50	-1.40	-1.10	
Threshold parameters						
μ1	2.801	27.92				
μ ₂	4.292	37.42				
Summary Statistics						
N			6,46	4		
Pseudo R ²	0.493					
Loglikelihood (null)			-4013.	632		
Loglikelihood (convergence)			-2036	.74		
AIC			4113.4	479		
BIC	4248.959					

Performance Measure	Ordered Probit	NB	KNN	GBT					
Overall Accuracy (%)	85.75	89.75	88.70	91.23					
Baseline									
Recall (%)	98.32	96.95	97.13	98.27					
Precision (%)	92.07	95.65	94.39	96.21					
F1 Score (%)	95.09	96.29	95.74	97.23					
Near-Crash									
Recall (%)	38.93	68.70	61.83	71.50					
Precision (%)	56.04	71.43	65.50	74.54					
F1 Score (%)	45.95	70.04	63.61	72.99					
Crash									
Recall (%)	34.44	47.78	44.44	48.33					
Precision (%)	41.06	52.12	57.97	58.39					
F1 Score (%)	37.46	49.86	50.31	52.89					

Machine Learning Results

Relative Importance (%) of Predictors: Gradient Boosting Tree Classifier

Posterior Probabilities of SCEs versus Driving Instability and Distraction Duration

20

2.5

2

Key Findings

- 5.17%, 5.98%, and 1.16% higher chance of a crash due to a unit increase in the COV of speed, COV of deceleration, and COV of a negative jerk, respectively.
- Performance error leads to the highest increase (13.75%) in crash risk followed by decision error (10.09%) and recognition error (9.08%)
- Crash risk increases by 0.17% due to a unit increase in the duration of distraction while keeping other variables at their mean values.
- GBT classifier accurately predicts the event outcome (baseline, near-crash, and crash) in the test data with the highest prediction accuracy of 91.23%.

Future Research

The study findings advocate the need for:

- Training proactive ML-based algorithms which can warn drivers about the potential risk of SCEs in real-time based on driver behaviors and performance
- Developing ML algorithms, e.g., GBT classifier can be used to collect and process information from sensors in vehicles
 - Can start monitoring driving errors, violations, instability in driving, and duration of distraction to predict crash risk in real-time

Can driver distraction be identified in different driving scenarios?

- Driver distraction can be readily identified from instantaneous variations in driver biometrics, vehicle kinematics, and roadway surroundings.
- The volatility measures in driver biometrics, vehicle kinematics, and roadway surroundings associate with higher levels of distraction.
- The coefficients of variation in driver eye movements, distance of the vehicle from the lane centerline and the following vehicle were determined as key predictors of driver distraction.

How can driving events be classified as normal and distracted/impaired?

- Driving events can be classified as undistracted and distracted under various levels based on volatility measures
 - These include instantaneous variations in driver biometrics, vehicle kinematics, and roadway surroundings
- Coefficients of Variation in driver eye movements, vehicle speed, vehicle distance from the lane centerline, front and the following vehicle can classify driving events.

How is prolonged distracted driving associated with safetycritical events?

- Longer duration of distracted driving is significantly associated with instability in driving (volatility) which in turn leads to safety-critical events.
- Distraction duration is substantially longer in crashes than near-crashes and baselines.
- The probability of a crash increases exponentially when the distraction duration exceeds 8 seconds.

What are the mechanisms for driving errors and violations that lead to safety-critical events?

- Driving errors, classified into 5 types and violations are significantly associated with higher instability in driving speed (COV of speed).
- A unit increase in the COV of speed (measure of driving instability) increases the risk of crashes and near-crashes by 17.94% and 29.50%, respectively.
- All driving errors and violations not only contribute to SCEs directly but also indirectly through instability in driving speed.

THANK YOU

Colloborative Sciences Center for ROAD SAFETY May 29, 2024