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1. Introduction 

1.1 Overview 
The increasing number of injuries and fatalities among vulnerable road users is a grave concern. 
Pedestrian fatalities have increased by over 80% from 2009 to 2021 (IIHS 2021). In 2021, 84% of 
fatal pedestrian-involved crashes occurred in urban areas, with 77% and 23% at non-intersections and 
intersections, respectively (NSC 2021). Roadway crossings are often deadly due to the variety of 
conflict points. Decades of research have led to roadway design transformations and traffic mobility 
enhancement; however, pedestrians are often ignored in optimization considerations 
(Mongkolluksamee et al. 2015). Investigating and improving driver-pedestrian interactions, especially 
in high-risk areas such as intersections, is necessary to improve transportation safety and reach the 
vision zero goal of eliminating all traffic fatalities and severe injuries. This CSCRS project first 
contributes by exploring strategies for improving pedestrian safety at non-intersections. Second, the 
project contributes by integrating new data sources and AI techniques to reduce negative driver-
pedestrian interactions at intersections while optimizing traffic flow. Overall, the key objective of this 
research is to enhance pedestrian safety at intersections. In this regard, the following activities were 
undertaken.  

1. Collect Data Elements: Link the accessible GridSmart camera feed from 8 monitored 
intersections. These intersections are located at the Chattanooga Shallowford Road corridor 
(between Lee Highway and Gunbarrel Road intersections) with geometric and other detector 
data to observe the queue lengths of vehicles.  

2. Develop an Algorithm for Safe Traffic Optimization: Use the data about vehicle queues and 
estimated pedestrian volumes to develop an AI-based decentralized algorithm for scalable 
optimization of traffic flow that is engineered to treat pedestrian safety as one of its priorities 
with mobility as an optimization constraint. 

3. Create a digital representation: Create a digital replica of the Shallowford corridor in SUMO 
(macro) with data links to the physical testbed. 

In addition, the study investigates real-life crashes at intersections using artificial intelligence methods. 
In this regard, the study investigates extreme and rare cases of pedestrian-involved crashes and 
nighttime crashes at intersections. In order to speed dissemination of findings, this report is organized 
as research papers, ready for publication: 

• Application of Pedestrian Traffic in Decentralized Dyna Q-Learning Environment: Assessing 
the Integration of Pedestrian Crossing Traffic in Decentralized Dyna Q-Learning Environment 

• Identifying Extreme Cases in Fatal Pedestrian-involved Crashes at Intersections: Application 
of Text Mining and Unsupervised Machine Learning Approaches 

• A Comparative Analysis of Nighttime Pedestrian Crash Injury Severity at Crossroads and Mid-
blocks 

1.2 Research Outputs 
Publications and presentations 

• Nelson Z., A. Khattak, K. Nordback & S. Chakraborty. (2024) Application of Pedestrian 
Traffic in Decentralized Dyna Q-Learning Environment (Assessing integration of 
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Pedestrian Crossing Traffic in Decentralized Dyna Q-Learning Environment), Submitted, 
Transportation Research Board 103rd Annual Meeting. 

• Nelson Z., R. Graves, A. Berres, J. Sanyal, & S. Chakraborty. (2024) Queue length 
prediction leveraging local camera based monitoring and traffic-flow data communicated 
between intersections, http://dx.doi.org/10.2139/ssrn.4252262 Submitted, Transportation 
Research Board 103rd Annual Meeting. 

• Harris L., N. Ahmad, A. Khattak, A., & Chakraborty, S. (2023). Exploring the Effect of 
Visibility Factors on Vehicle–Pedestrian Crash Injury Severity. Accepted for Publication 
in Transportation Research Record, https://doi.org/10.1177/03611981231164070. 

• Moradloo N., I. Mahdinia, A. Khattak, M. SafariTaherkhani. (2023) Identifying Corner 
Cases in Fatal Pedestrian-involved Crashes: Application of Unsupervised Machine 
Learning Approach. TRBAM-23-03592. 

• Usman S., A. Khattak, & A. Latif Patwary. (2024) Exploring the Determinants of 
Nighttime Pedestrian Crash Severity in Disadvantaged Communities: Application of 
Statistical and Machine Learning Techniques, Submitted, Transportation Research Board 
103rd Annual Meeting. 

• Usman S., & A. Khattak. (2024) A Comparative Analysis of Nighttime Pedestrian Crash 
Injury Severity at Crossroads and Mid-blocks, Submitted, Transportation Research Board 
103rd Annual Meeting. 

  

https://dx.doi.org/10.2139/ssrn.4252262
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2. Application of Pedestrian Traffic in Decentralized Dyna Q-
Learning Environment: Assessing the Integration of Pedestrian 
Crossing Traffic in Decentralized Dyna Q-Learning Environment 

2.1 Authors 
Zach Nelson, Asad Khattak, Krista Nordback, and Subhadeep Chakraborty 

2.2 Abstract 
As new developments to traffic signal controllers through machine learning can allow for less 
traditional signal schedules, this work tries to optimize the service and safety of all entities, both 
vehicular and pedestrians, who may utilize a traffic intersection. A traffic signal controller strategy 
using a reinforcement learning algorithm is modified to include the service of pedestrian crossings and 
maintain safe crossing for pedestrian traffic. The algorithm consists of a method of Dyna-Q learning 
to improve the learning rate and allow for the capacity to negotiate with neighboring intersections with 
a similar configuration. Results point towards an outcome where AI agents can service pedestrians 
safely even when they are at a lower priority than passenger vehicles but with elevated waiting times. 
Alternatively, the additional delays for pedestrians can be reduced but at the cost of vehicle delay 
performance. This points to a tunable traffic control system that can be programmed to maintain the 
requisite safety for vulnerable road users but maintain an optimum flow of vehicular and pedestrian 
traffic. Moreover, this method is reactive, adaptive, and scalable. This method may benefit future work 
by applying improved models and being assessed against real-life data or multi-intersection 
environments. 

2.3 Introduction 
When designing the behavior of a traffic signal, the safety of all users must be accounted for in the 
design. One of the advantages introduced by a traffic signal operated by a machine learning algorithm 
is that an intersection does not need to repeat the same signal in a predetermined cycle with only minor 
changes in duration based on external sensors. While this can be considered disorienting for some 
individuals who may be accustomed to the traditional timing sequence, many individuals might be 
open to a more unorthodox timing strategy if it means that they may be serviced at an intersection 
more frequently. While a large focus in designing machine learning-influenced traffic lights is the 
regulation and improvement of traffic, it is also important to consider pedestrian traffic and ensure 
their general safety when crossing an intersection. While a traffic signal controller may benefit from 
ignoring certain rules or parameters to optimize traffic flow, it is still important that safety parameters 
continue to be enforced, even at the cost of efficiency. It is important, especially in urban areas or any 
other intersections with a large amount of foot traffic, that the algorithms governing the decisions and 
phases of the intersections maintain a healthy balance between the needs of the drivers and the needs 
of the pedestrians. Otherwise, an intersection may only focus entirely on the demand for vehicles to 
be serviced and leave pedestrians waiting for an unreasonable length of time, potentially contributing 
to unsafe crossing behavior. 

2.4 Methodology 
A Reinforcement Learning (RL) algorithm manages the traffic signal controllers in our work. RL is a 
machine learning (ML) technique that does not require abundant data sources. Instead, RL can learn 
from previous experiences and adjust its logic and behavior based on how its decisions have changed 
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the surrounding environment. In this environment, the states for the RL agent are based on whether a 
lane is considered “Full” or “Empty”, resulting in a total of 256 (28) unique permutations (RL states) 
of being “Full” and “Empty” considering all eight directions of travel that require a traffic light to 
allow for travel. The reward, the RL parameters that influence decisions wherein the best decisions 
create the highest reward value, is entirely focused on an approximate measurement of delays. Delay 
values are recorded by estimating the total duration that a vehicle has been waiting at an intersection, 
with a set of weights following an exponential curve model to increase the penalty and cost of not 
servicing a vehicle for prolonged periods, partly as a safeguard to ensure a degree of fairness to ensure 
lanes with less traffic are not left idle for prolonged periods in favor of more dense lanes. The actions 
and traffic phases that the RL agent can alternate between to impact traffic queues, reflect the eight 
standard traffic phases that occur at a common traffic signal intersection. Each action is set at a uniform 
duration of 13 seconds to guarantee that at least four vehicles per lane can cross an intersection from 
idle. All actions are the same duration, as this can allow multiple RL agents in a traffic network to 
communicate and strategize an optimal decision between each other in a decentralized manner. The 
method by which the actions are selected is based on an array containing the quality value, or Q-
values, for each possible state/action combination, resulting in a size 256 x 8 matrix. 

While RL does not require historical information sets to learn, it can be helpful to bolster and improve 
performance, especially if the environment is more stochastic than deterministic. Dyna-Q Learning is 
a form of RL that runs simulated experiences between actual actions to estimate the most optimal 
action to take without spending real-time learning through trial and error. This requires that 
probabilistic models be created to estimate the likelihood of various stochastic transitions for each 
state/action pair. This model tests the results multiple times, often utilizing the resultant state from a 
state/action pair to better train and assess the outcome of long-term behavior and actions, as some 
decisions may have short-term gains but long-term consequences. Additionally, the simulated 
outcomes generate their own unique set of Q-values that are later applied to the real-world Q-values 
at a discounted weight, as the simulations can always carry some degree of inaccuracy. To further 
improve performance, the actions can often include a small set of tests that include the estimations and 
predictions of the traffic state to anticipate better and train the behavior for what may be the next traffic 
phase, utilizing delay weights that account for the expected delays brought by either the action or 
inaction of the RL agent. Figure 1 illustrates how real data is applied directly to the Q-values and 
simulated experiences generated through a model. 

 

 

Fig. 1. Representation of Dyna-Q Learning 

 

The simulations are performed through a microscopic and continuous-scale simulation platform 
known as the Simulation of Urban Mobility (SUMO). Through the application of built-in SUMO 
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packages, we were able to re-create the traffic and roadway layout for a modest length of Shallowford 
Road, located in Chattanooga, Tennessee. To properly test the environment, a handshake program 
called TracI4MATLAB allowed for a series of MATLAB commands to observe the SUMO 
environment, interpret information, and give commands back to SUMO to change traffic light 
behavior to reflect the decisions and suggested actions made by the RL agent. Through collaboration 
with the Oak Ridge National Lab staff, we acquired historical data for the timing sequences of the 
intersections along Shallowford Road and the recorded flow of traffic for prolonged periods. For the 
flow of pedestrian traffic, the Highway Capacity Manual (HCM) definition of grading pedestrian 
sidewalks was applied, following the assumption that the roadways meet a Class A Level of Service 
(LOS) definition for density along sidewalks (HCM 2000). 

 

Fig. 2. Simulation Environment (Chattanooga, TN) 

Pedestrians could be included in the algorithm by having their importance weight and headcount 
measured through localized sensors. The relative weight their delays would incur upon the algorithm 
is associated with the flow of vehicular traffic that is parallel to the flow of pedestrians, ensuring that 
pedestrians may be serviced while minimizing any additional computational complexity that would 
normally occur by adding further actions. Suppose the duration of an action does not last long enough 
to ensure the safe transition of pedestrians across an intersection. In that case, the algorithm will be 
restricted in the phases it may choose to enact during the next decision cycle to ensure enough time 
for all pedestrians to safely cross, as illustrated in Figure 3. Following the Federal Highway 
Administration guidance, the pedestrian crossing signal provides a WALK indicator for a minimum 
of 7 seconds with the necessary amount of time required for the Change Interval, which is ensured 
through image recognition software and safety features coded in the agent’s architecture (MUTCD 
2009). 

In previous test cases where there was no pedestrian traffic, the RL agent could transition from action 
to action with no safety issues regarding vehicles, as a 3-second yellow phase was applied whenever 
a phase was discontinued in favor of another phase. However, the inclusion of pedestrian traffic will 
result in some phases being artificially extended an additional action, resulting in modifying the 
previous Dyna-Q model to reflect this consequence to the RL agent when training that the penalty for 
not helping a lane associated with pedestrian traffic is more severe than not servicing the other lanes 
for the next two or more decision cycles.  



10 

 

 

Fig. 3. Study Framework 

2.5 Results 
Testing was conducted on the SUMO re-creation of the intersection of Shallowford Road and 
Gunbarrel Road in Chattanooga, TN. The vehicular data is a re-creation of information provided by 
Oak Ridge National Labs and reflects the flow of traffic collected from 6 AM to 7 AM. The lighter 
flow at this hour allows the AI agent to exploit some gaps in traffic flow to reduce vehicular delay. 
However, no historical data for pedestrian crossings were available and had to be approximated based 
on the assumption that pedestrian traffic correlates with the Level of Service, resulting in a flow of 
800 pedestrians per hour traveling along both crosswalks, respectively. Only two crosswalks were 
created as the respective environment only has two crosswalks, as seen in Figure 2, However, it should 
be noted that the other two approaches without crosswalks are legal crossings, and it is likely that 
some pedestrians do cross at these unmarked crosswalks, though they are not included in our study. 

Comparisons are made between the performance of the actuated traffic light and the RL-controlled 
traffic light. Separate measurements were taken for both vehicular traffic as well as pedestrian traffic. 
Delay measurements begin for a vehicle as soon as the velocity decreases to less than 90% of the given 
speed limit, suggesting that the vehicle has had to decelerate and either join a queue or form one of its 
own. This delay value will continue to increase for the vehicle, even after accelerating to the allowable 
speed limit, until it crosses the intersection. The total delay for any instance is measured as the quotient 
of the cumulative waiting time for all vehicles in each cardinal direction, and the number of vehicles 
delayed. The same metric applies to pedestrian traffic, with delays measured as soon as they slow 
down and continue until they can cross the intersection. 

The comparison is made against actuated traffic controllers using a modified version of the signal 
logic that is currently deployed at the Shallowford and Gunbarrel road intersection (Berres et al. 2021). 
The actuated signals were modified such that if a pedestrian is interested in crossing, abstractly 
representative of a pedestrian pushing a button to show interest in crossing, the signal duration would 
allow for the crossing of pedestrians and the necessary time needed for minimum green crossing time. 
It is important to note that beyond the pressing of a button, the pedestrian levels play no significant 
factor in the duration of the green phase, as the actuated controller does not have any embedded sensors 
to extend phases for pedestrians but only for oncoming vehicles that may be able to cross the 
intersection threshold if the signal is extended by a few seconds. 

Table 1. Vehicular Delays Results of Optimal Models for Pedestrians 

Directional Flow Average Vehicle Delay 
[sec/veh] 

Percent Difference 

Westbound Left (RL) 0.45 56% Westbound Left (Actuated) 1.02 
Westbound Through (RL) 7.21 47% Westbound Through (Actuated) 13.77 

Northbound Left (RL) 11.25 18% 
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Northbound Left (Actuated) 13.80 
Northbound Through (RL) 9.22 30% Northbound Through (Actuated) 13.08 

Eastbound Left (RL) 2.74 0% Eastbound Left (Actuated) 2.73 
Eastbound Through (RL) 4.87 35% Eastbound Through (Actuated) 7.54 

Southbound Left (RL) 2.16 -11% Southbound Left (Actuated) 1.93 
Southbound Through (RL) 7.42 -26% Southbound Through (Actuated) 5.86 

Total RL Improvement 24.10%  
 

Table 2. Pedestrian Delays Results of Optimal Models for Pedestrians 

Directional Flow Average Pedestrian Delay 
[sec/ped] 

Percent Difference 

Northbound (RL) 40.15   -63% Northbound (Actuated) 24.62 
Eastbound (RL) 28.99 -63% Eastbound (Actuated) 17.68 

Southbound (RL) 17.73 23% Southbound (Actuated) 22.90 
Westbound (RL) 9.56 33% Westbound (Actuated) 14.28 

Total RL Improvement -21.31%  
 

Table 3. Vehicular Delays Results of Optimal Models for Vehicles 

Directional Flow Average Vehicle Delay 
[s/veh] 

Percent Difference 

Westbound Left (RL) 0.22 78% Westbound Left (Actuated) 1.02 
Westbound Through (RL) 7.14 48% Westbound Through (Actuated) 13.77 

Northbound Left (RL) 5.06 63% Northbound Left (Actuated) 13.80 
Northbound Through (RL) 4.63 64% Northbound Through (Actuated) 13.08 

Eastbound Left (RL) 2.54 7% Eastbound Left (Actuated) 2.73 
Eastbound Through (RL) 3.08 59% Eastbound Through (Actuated) 7.54 

Southbound Left (RL) 2.83 -46% Southbound Left (Actuated) 1.93 
Southbound Through (RL) 6.28 -7% Southbound Through (Actuated) 5.86 

Total RL Improvement 46.77%  
 



12 

 

Table 4. Pedestrian Delays Results of Optimal Models for Vehicles 

Directional 
Flow 

Average Pedestrian Delay 
[s/ped] 

Percent Difference 

Northbound 
(RL) 

39.05 -58% 

Northbound 
(Actuated) 

24.62 

Eastbound 
(RL) 

27.68 -56% 

Eastbound 
(Actuated) 

17.68 

Southbound 
(RL) 

34.60 -51% 

Southbound 
(Actuated) 

22.90 

Westbound 
(RL) 

15.58 -9% 

Westbound 
(Actuated) 

14.28 

Total RL 
Improvement 

-47.07%  

 

The outcome from assessing vehicular and pedestrian performance shows that all vehicles’ average 
waiting time decreases by approximately 24%. In comparison, the average waiting time for pedestrians 
increases by approximately 21%. The penalties applied to the RL agent are influenced by arbitrary 
weights that increase or decrease the priority of vehicular or pedestrian traffic. These penalties, the 
total number of vehicles and pedestrians waiting at an intersection, and the most optimal subsequent 
action determine the agent’s behavior during every decision cycle. 

Visual analysis of the delay values for vehicles and pedestrians indicates that while some pedestrians 
may need to wait a long time, they are eventually serviced. Moreover, it may be observed from Figures 
4 and 5 that while pedestrian delays during most cycles are observed to stay below a minute, a few 
instances of about 100-second delay are observed. This is due to an artifact of how SUMO phases the 
pedestrian movement in a steady stream rather than all at once. This causes some pedestrians not to 
be able to use a particular walk signal and wait for the next one, which is unrealistic from a practical 
standpoint. In real life, we expect the entire group of pedestrians to start crossing the street on a given 
walk signal. This essentially points to the fact that our assessment of the pedestrian delays in the RL 
algorithm may be artificially inflated.  

Even with this artificial shortcoming, an exponentially growing weight on the delay values ensures a 
degree of fairness for pedestrians at the cost of a potential decrease in efficiency for higher-density 
vehicular traffic.  
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Fig. 4. Pedestrian Delay (Southbound Flow) 

  

Fig. 5. Vehicular Delay (Westbound Through Flow) 

2.6 Conclusion 
Analysis of the data suggests that while pedestrian waiting times may increase (both as a result of 
safety-efficiency compromise as well as due to artificial inflation related to SUMO), a traffic signal 
controller governed by a machine learning algorithm, specifically a reinforcement learning algorithm 
with Dyna-Q learning and an image recognition system, can potentially improve the safe crossing of 
pedestrians and maintain its initial purpose of reducing the delay of vehicular traffic.  Also, more 
beneficial results may be observed at intersections in an urban environment where there may be fewer 
lanes and thus a need for a shorter clearance time, reducing the likelihood of the agent being restrictive 
in its decision-making process. While the experiment primarily focused on an average walking speed 
that correlates with less elderly groups, the image recognition and safety metrics could ensure, if they 
are implemented correctly and are functional and maintained, that the agent takes necessary actions to 
extend a phase if pedestrians are on the road, regardless of efforts to optimize efficiency. 

 

3. Identifying Extreme Cases in Fatal Pedestrian-involved Crashes 
at Intersections: Application of Text Mining and Unsupervised 
Machine Learning Approaches 

 

3.1 Authors 
Nastaran Moradloo, Iman Mahdinia, Asad J. Khattak 

Author affiliations:  
Civil & Environmental Engineering, The University of Tennessee, Knoxville, TN, USA 

This chapter presents a brief version of an unpublished paper that focuses on identifying extreme cases 
of fatal crashes involving pedestrians. The US Department of Transportation supported the research 
through the Collaborative Sciences Center for Road Safety (CSCRS), a consortium led by The 
University of North Carolina at Chapel Hill in partnership with The University of Tennessee. A paper 



14 

 

with the same title was presented at the 102nd Annual Meeting of the Transportation Research Board. 
The paper was submitted for publication in a transportation safety journal, Accident Analysis & 
Prevention, and is currently under review. 
 

3.2 Abstract 
The increase in fatalities of vulnerable road users, such as pedestrians, is a worrying trend. In 2021 
there were 7,342 pedestrian deaths, a 12.7% increase from the 6,516 deaths in 2020. Although all fatal 
pedestrian-involved crashes are critical, some occur in rare and extreme circumstances, called “corner 
cases,” which present a formidable challenge to the safe operation of Automated Vehicles (AVs). 
These corner cases have a high risk of fatalities and severe injuries, making it essential to identify 
them to achieve the transportation administration’s vision zero goal. This study identifies corner cases 
in fatal pedestrian-involved crashes at intersections using the Fatality Analysis Reporting System 
(FARS) 2020 data, which consists of 1,000 one-pedestrian one-vehicle crashes. The authors present a 
systematic procedure to extract corner cases from these crashes, which involves text analysis of 
existing literature and applying an unsupervised machine-learning technique called the K-means 
approach. The results show that nine crashes (1% of the population) are corner cases where a 
combination of critical factors triggers the crash. These factors include poor visibility, severe weather, 
impaired pedestrian or driver behaviors, and dark lighting conditions. Some manifestations of these 
factors are more likely to occur, such as poor visibility, severe weather, dark lighting conditions, 
pedestrian intoxication, and pedestrians’ failure to obey traffic rules. The findings of this study can 
help road safety practitioners and AV manufacturers prepare for and overcome such extreme 
circumstances by improving roadway infrastructure and developing AV technologies that operate 
safely in corner cases. 

3.3 Introduction 
The number of fatal crashes has increased, and pedestrian fatalities are a primary concern in the 
transportation system (NHTSA 2023). Research has identified factors affecting crash severity and 
implemented countermeasures to improve pedestrian safety (USDOT 2021). However, rare traffic 
crashes that are highly unlikely to happen, called “corner cases,” have received less attention but are 
critical to transportation planners from different perspectives (Cai et al. 2016, Sze et al. 2019, 
Kalisvaart et al. 2021). Identifying corner cases can help transportation administrations reach the 
vision zero goal and improve the safety of Automated Vehicles (AVs), which are anticipated in the 
future transportation system. This study presents a systematic procedure to extract corner cases from 
car-pedestrian fatal crashes at intersections using text analysis of existing literature and unsupervised 
machine learning techniques. The study identifies critical phenomena that could result in corner cases, 
such as extreme values or criticality phenomena, resulting in a condition that challenges the 
capabilities of the whole system. Countermeasures, such as improving illumination, pedestrian signals, 
and implementing raised crosswalks, can reduce the crash severity. 

3.4 Methodology 
Using text analysis and an unsupervised machine learning approach, the study aims to identify corner 
cases in fatal pedestrian-involved crashes to improve pedestrian safety. This study identifies critical 
events in rare and extreme pedestrian-vehicle crash scenarios by text-mining 20 fatal pedestrian 
crashes. Text analysis reveals that darkness and poor visibility are the most frequent topics, followed 
by the off-peak hour, land use, high-speed limit, visual obstruction, and roadway classification. K-
means clustering is an unsupervised machine learning method that partitions observations into pre-
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specified clusters with mean values, and it seeks to minimize the within-cluster variation by calculating 
the distance between observations and centroids. The elbow method can be used to determine the ideal 
number of clusters, and it is important to scale and standardize variables before clustering by adding 
indicator variables for categorical variables. Fig. 6 shows the study framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Study Framework. 

To identify corner cases in a study, the following steps should be followed: (1) perform clustering on 
all observations, (2) continue sub-clustering until the cluster size is less than 1% of the whole 
population size, (3) assign a total weight to each cluster based on the likelihood of possessing critical 
variables, (4) identify sub-clusters with potential corner cases if the assigned total weight is higher 
than 6, and (5) rank the observations in identified clusters based on the number of critical variables 
they include to identify single-point corner cases. The procedure is illustrated in Fig. 7 and involves 
systematically adding steps to detect corner cases. 
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Fig. 7. Overview of the corner cases detection procedure in this study 

 
 
The study utilized the FARS 2020 dataset, which gathers fatal crashes from the US Department of 
Transportation National Highway Traffic Safety Administration’s National Center for Statistics and 
Analysis (FARS 2020). The study focused on one-pedestrian one-vehicle crashes at intersections, with 
a total of 1,000 fatal pedestrian-vehicle crashes after data pre-processing. Variables were categorized 
into pedestrian, driver, environmental, and roadway characteristics, and those that were frequently 
used in previous studies and can result in critical conditions were selected. Factors that can cause 
critical conditions include jaywalking, driver visual obstruction, severe weather, pedestrian or driver 
impairment, and failing to obey the traffic rules (e.g., traffic signals, signs, and right of way). 
 

3.5 Results 
The authors select K = 4 clusters based on the cluster elbow plot and their judgment. Figure 8 illustrates 
the clustering overview from layers 0 to 4 for cluster three and sub-clusters with the highest weight of 
critical variables for a demonstration. As the results show in the final layer, cluster 2 in layer 4 
possesses the highest weight of critical variables, indicating the possibility of rare and extreme 
observations in this sub-cluster is higher than others. Tables 5 and 6 present the identified corner cases 
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in clusters three and clusters one, two, and four, respectively. Bold variables indicate the critical events 
present during the crash. For example, in corner case #1 in cluster three, the collision occurred on an 
urban interstate road with a traffic signal, and the pedestrian was intoxicated and failed to obey the 
traffic signal. The pedestrian was not visible in severe weather and dark-lighted condition.  

 

Fig. 8. Clustering overview from layers 1 to 4 for cluster three and sub-clusters with the highest 
weight of critical variables 

The study analyzed nine corner cases (1% of the population) in fatal pedestrian-vehicle crashes at 
intersections. In 89% and 56% of corner cases, the pedestrian was intoxicated, and the driver was 
under the influence of drugs, alcohol, or medicine, respectively. The pedestrian was jaywalking and 
failed to obey the traffic signal, signs, or right of way in 89% of corner cases. All identified corner 
cases occurred in dark or dark-lighted conditions. Critical events that can result in corner cases include 
unusual pedestrian behaviors, low visibility conditions, extreme weather conditions, unusual driver 
behaviors, and visual obstruction. The results suggest that corner cases represent uncommon or 
extreme scenarios that can pose challenges for preventing or mitigating the severity of pedestrian-
vehicle crashes. The study examines critical events that may lead to corner cases in fatal vehicle-
pedestrian crashes based on the FARS data. They refer to uncommon or extreme scenarios, including 
unusual pedestrian or driver behaviors, low visibility or extreme weather conditions, and visual 
obstruction. Previous studies suggest AVs may not handle rare and extreme scenarios (NTSB 2019) 
(Mahdinia et al. 2022), such as those identified as corner cases in this study. The study’s limitations 
include excluding non-fatal crashes and the absence of impact speed and ADS-related variables in the 
data. 
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Table 5. Corner cases in cluster three 

Variable # corner case    

1 2 3 4 

Failure, ROW, 
Signs 

Failed to Obey the 
traffic signal 

Failed to Obey the 
traffic signal 

Failed to Obey the 
traffic signal 

Failed to Obey the 
traffic signal 

Land use Urban Urban Urban Urban 

Light Dusk/Dawn or 
Dark-lighted 

Dusk/Dawn or 
Dark-lighted 

Dark Dark 

Speed limit >=45 mph 35-40 mph >=45 mph 35-40 mph 

Jaywalking Jaywalking No Jaywalking Jaywalking Jaywalking 

Pedestrian 
intoxication 

Intoxicated Intoxicated Intoxicated Intoxicated 

Movement The pedestrian or 
driver failed to 
yield 

The pedestrian or 
driver failed to 
yield 

The pedestrian or 
driver failed to 
yield 

The pedestrian lost 
control 

Peak hour Off-peak hour Off-peak hour Off-peak hour Peak-hour 

Driver impairment Not drunk Not drunk Drunk and under 
the influence 

Not drunk 

Roadway 
Functional System 

Arterial Arterial Arterial Arterial 

Pre-crash Going straight Going straight Speeding Going straight 

Visual obstruction No visual 
obstruction 

Other motor 
vehicles 

No visual 
obstruction 

No visual 
obstruction 

Weather Severe weather Clear clear clear 

Pedestrian- 
reflective item 

Did not use a 
reflective item or 
cloth 

Did not use a 
reflective item or 
cloth 

Did not use a 
reflective item or 
cloth 

Did not use a 
reflective item or 
cloth 

Visibility Not visible Not visible Visible Not visible 

Signal Yes Yes Yes Yes 

 

Table 6. Corner cases in clusters one, two, and four 

Variable # corner case     

1 2 3 4 5 

Failure, ROW, 
Signs 

Failed to Obey the 
rule 

Failed to Obey the 
rule 

Failed to Obey the 
rule 

Obeyed the 
traffic rule 

Failed to Obey 
the rule 

Land use Urban Urban Rural Urban Urban 
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Light Dark Dusk/Dawn or 
Dark-lighted 

Dark Dark Dusk/Dawn or 
Dark-lighted 

Speed limit 25-30 mph 25-30 mph >=45 mph 35-40 mph 25-30 mph 

Jaywalking Jaywalking Jaywalking Jaywalking Jaywalking Jaywalking 

Pedestrian 
intoxication 

Intoxicated Intoxicated Intoxicated Not intoxicated Intoxicated 

Movement The pedestrian or 
driver failed to 

yield 

Walking or 
running along the 

roadway 

The pedestrian or 
driver failed to 

yield 

Dash or dart The pedestrian 
or driver 

failed to yield 

Peak hour peak hour peak hour peak hour Off-peak hour Off-peak hour 

Driver 
impairment 

Drunk and was 
under influenced 

Not drunk Physical 
impairment but 

not drunk 

Drunk and 
was under 
influenced 

under the 
influence of 

medicine 

Roadway 
Functional 

System 

Arterial Local Arterial collector arterial 

Pre-crash Going straight Going straight Going straight Changing 
lanes and 
passing 

Turning 

Visual 
obstruction 

No visual 
obstruction 

External reasons 
(Rain, Snow, Fog) 

No visual 
obstruction 

Other motor 
vehicles 

No visual 
obstruction 

Weather Clear Severe weather Clear Clear Severe 
weather 

Pedestrian- 
reflective item 

Did not use a 
reflective item or 

cloth 

Did not use a 
reflective item or 

cloth 

Did not use a 
reflective item or 

cloth 

Did not use a 
reflective item 

or cloth 

Unknown 

Visibility Not visible Not visible Visible Visible Visible 

Signal No No No No Yes 

 

3.6 Conclusion 
The number of fatal pedestrian crashes is increasing every year, and some occur in rare and extreme 
cases called “corner cases,” which may require specific safety countermeasures to be avoided or 
mitigate the severity level. This study presents a novel idea that provides a systematic procedure to 
detect corner cases in vehicle-pedestrian fatal crashes at intersections. Through analyzing the FARS 
2020 data, an unsupervised machine learning method, the K-means approach, is utilized to develop a 
procedure to identify corner cases. Nine observations (1% of the population) were identified as corner 
cases, and the findings imply that identifying corner cases in fatal pedestrian-involved crashes is 
critical for reaching the vision zero goal and improving the performance of AVs. There are several 
areas for future research, including investigating other types of crashes and utilizing other methods to 
identify corner cases. 
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4. A Comparative Analysis of Nighttime Pedestrian Crash Injury 
Severity at Crossroads and Mid-blocks  

4.1 Authors 
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Author affiliations: 
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This chapter presents a brief version of an unpublished paper, which analyzes the contributing factors 
of nighttime pedestrian crashes at intersections and non-intersections. The US Department of 
Transportation supported the research through the Collaborative Sciences Center for Road Safety 
(CSCRS), a consortium led by The University of North Carolina at Chapel Hill in partnership with 
The University of Tennessee. The paper will be submitted for a conference presentation at the 103rd 
Annual Meeting of the Transportation Research Board. It will also be submitted for publication in a 
transportation safety journal titled Accident Analysis & Prevention.  
 

4.2 Abstract 
Intersections, or crossroads, present a trade-off between road user safety and mobility. Pedestrians are 
highly vulnerable to road traffic crashes at such locations. This study analyzed the determinants of 
nighttime pedestrian crash injury severity in pedestrian-involved crashes on intersections and non-
intersections in North Carolina using pedestrian crash data extracted from a comprehensive police-
reported crash database created using a crash typing method known as Pedestrian and Bicyclist Crash 
Analysis Tool (PBCAT). Separate Ordered Logit Models were estimated to analyze pedestrian injury 
severity in pedestrian crashes at intersections and non-intersections. Owing to its enhanced predictive 
performance, a powerful machine learning algorithm called Random Forest was also employed to 
classify the pedestrian injury outcomes in crashes at intersections and non-intersections. The analysis 
results reveal that nighttime pedestrian crashes at intersections involving alcohol impairment, foggy 
weather, elderly pedestrians (over 60 years), a speed limit of 50-55 mph, and motorists not yielding to 
pedestrians were more likely to contribute to severe pedestrian injuries. At non-intersection locations, 
pedestrian crashes involving pedestrian behaviors such as crossing at midblock non-crosswalk 
locations, dash and dart behavior, walking along the roadway, etc., were found to be positively 
associated with fatal and severe injuries to pedestrians. The study findings are expected to assist 
policymakers and safety practitioners in implementing roadway-specific pedestrian safety 
countermeasures to mitigate pedestrian crash injury severity. 

4.3 Introduction 
Pedestrians are most vulnerable to traffic crashes as they are the least protected among all road users. 
In the United States, pedestrian fatalities have increased by more than 50% from 2009 to 2019, with 
more than 85% occurring at night (FARS 2019). Pedestrians are at a higher risk of being involved in 
crashes at night than during daytime and regular light conditions (Uttley and Fotios 2017). In addition 
to human and vehicle characteristics, roadway geometric characteristics have a major impact on the 
occurrence of pedestrian-vehicle crashes and the resulting injury severity. In 2018, around 25% of the 
fatal pedestrian crashes in the US occurred at intersections or near-intersection locations. Pedestrian 
crashes can occur on various roadway features such as mid blocks, intersections, driveways, and 
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parking lots; however, intersections demand more focus from transportation safety planners and 
researchers due to the higher proportion of fatal pedestrian crashes associated with them. This higher 
share of fatal pedestrian crashes at intersections warrants a comprehensive investigation of various 
human, roadway, and crash-specific factors that influence pedestrian crash injury severity in vehicle-
pedestrian crashes at intersections and non-intersection locations. This study compares the roles of 
pedestrian or driver behaviors, traffic control measures, and roadway geometric characteristics on 
pedestrian injury severity in nighttime vehicle-pedestrian crashes at intersections and non-
intersections. The motivation behind this study is to determine appropriate pedestrian safety 
countermeasures that can assist in mitigating pedestrian injury severity at intersections and non-
intersection locations. This study provides valuable insights into the major differences between 
pedestrian crash attributes on intersections and non-intersections. Findings from this study can assist 
transportation safety practitioners and planners in implementing roadway-specific pedestrian safety 
countermeasures to mitigate pedestrian crash injury severity. 

4.4 Methodology 
To analyze pedestrian crash injury severity at intersections and non-intersections, pedestrian crash 
information for the state of North Carolina was obtained from a comprehensive database known as the 
Pedestrian and Bicycle Crash Analysis Tool (PBCAT). The key variables present in the PBCAT 
database include driver and pedestrian impairment (due to alcohol or drugs), the position of pedestrians 
at the time of a crash, roadway factors (roadway types/classes and configuration), lighting conditions, 
speed limit, land use, types of surrounding developments, weather conditions, geocoded locations of 
crashes, demographics details (e.g., age, gender, and race) of pedestrians and drivers, and the risky 
behaviors of drivers and pedestrians involved in pedestrian-vehicle crashes. Pedestrian injury severity, 
reported on a five-level KABCO scale in the PBCAT database, was selected as the dependent variable 
for the analysis. The dataset consists of 2329 nighttime pedestrian crash observations in North Carolina 
from 2016 through 2019. The study employed segmented ordered logit models to analyze nighttime 
pedestrian crash injury severity in vehicle-pedestrian crashes at intersections and non-intersections. 
The dataset for pedestrian crashes at intersections had 794 crash observations, while the dataset for 
non-intersection pedestrian crashes consisted of 1535 crashes. Separate ordered logit models were 
estimated to analyze pedestrian injury severity in pedestrian crashes on intersections and non-
intersections in addition to the overall model. A likelihood ratio test was also performed to determine 
the statistical significance of the segmented modeling approach. The study framework is presented in 
Figure 9. 
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Fig. 9: Overall Study Framework 

 

4.5 Results 
Tables 7 and 8 present the results of the estimated ordered logit models for pedestrian crashes at 
intersections and non-intersections, respectively. Both models were compared to determine the 
statistical significance of the segmentation using a likelihood ratio test, which shows the segmented 
models are statistically significantly different from each other, thus providing evidence supporting the 
segmented modeling approach. All the explanatory variables included in the models were found to be 
statistically significant at a 95% and higher confidence level. Referring to Table 7, left-turning vehicles 
at intersections were positively associated with higher levels of pedestrian injury severity. The 
marginal effects of the left-turning vehicles indicator suggest that the variable is associated with an 
increase of 0.0752 and 0.1143 units in the probability of incapacitating and fatal injury to pedestrians, 
respectively. Similarly, nighttime pedestrian crashes at intersections involving alcohol impairment, 
foggy weather, elderly pedestrians (aged above 60 years), a speed limit of 50-55 mph, and motorists 
not yielding to pedestrians were found more likely to result in more severe injuries, while pedestrian 
crashes involving pedestrian road crossing at designated crosswalks and presence of traffic signs at 
intersections were found less likely to result in more severe injuries to the pedestrians.  

Referring to Table 8, pedestrian crossing at non-crosswalk indicator at non-intersections was 
positively associated with higher levels of pedestrian injury severity. The marginal effects for the 
indicator suggest an increase in the probability of incapacitating injury by 0.0498 and fatal injury by 
0.0878 units. Furthermore, nighttime pedestrian crashes at non-intersections involving pedestrian 
alcohol impairment, pedestrians walking along the road, pedestrian dash and dart behavior, and male 
drivers were found more likely to result in more severe injuries. Nighttime pedestrian crashes on local 
streets, multi-lane roads, roads without proper lights, and roads with a speed limit of 60-75 mph were 
positively associated with more severe pedestrian injuries. Hit and Run crashes at non-intersection 
locations were associated with an increase of 14.60% in the chance of fatal pedestrian injury. In 
comparison, a Stop-and-Go signal at midblock and non-intersection locations was associated with a 
decrease of 3.62% in the possibility of fatal injury to pedestrians.  

 

Table 7. Results of Ordered Logit Model for Nighttime Pedestrian Crashes at Intersections 
(N=794) 

Variables Parameter 
Estimate 

p-
value 

Marginal Effects 

   No 
Injury 

Possible 
Injury 

Minor 
Injury 

Incapacitating 
Injury 

Fatal 
Injury 

Left Turning Vehicle 
(1/0) 

0.999 0.001 -0.037 -0.166 0.012 0.075 0.114 

Pedestrian Alcohol 
impairment (1/0) 

0.913 0.000 -0.033 -0.151 0.011 0.068 0.104 

Motorist not yielding 
to pedestrian (1/0) 

1.954 0.000 -0.072 -0.324 0.024 0.147 0.223 
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Foggy Weather (1/0) 0.591 0.048 -0.022 -0.098 0.007 0.044 0.067 

Pedestrian at 
Designated Crossing 
(1/0) 

-0.438 0.024 0.016 0.073 -0.005 -0.033 -0.050 

Pedestrians aged 
above 60 years (1/0) 

1.121 0.003 -0.041 -0.186 0.014 0.084 0.128 

Speed limit 50-55 
mph (1/0) 

0.733 0.000 -0.027 -0.121 0.009 0.055 0.083 

Presence of Traffic 
Signs (1/0) 

-0.617 0.035 0.022 0.102 -0.007 -0.046 -0.070 

Summary Statistics 

N   794     

LL at zero   -1128.39    

LL at convergence   -900.34    

Pseudo-R2   0.2021     

χ2 (8)   456.10     

Prob > χ2   0.000     

AIC   1816.68    

BIC   1854.09    

Note: LL = Log-likelihood, AIC = Akaike Information Criteria, BIC = Bayesian Information Criteria 

 

Table 8. Results of Ordered Logit Model for Nighttime Pedestrian Crashes at Non-
Intersections (N=1535) 

Variables Parameter 
Estimate 

p-
value 

Marginal Effects 

   No 
Injury 

Possible 
Injury 

Minor 
Injury 

Incapacitating 
Injury 

Fatal 
Injury 

Pedestrian crossing at 
non-crosswalk (1/0) 

0.728 0.000 -0.026 -0.110 -0.002 0.050 0.088 

Local Street (1/0) 0.676 0.010 -0.024 -0.102 -0.001 0.046 0.081 

Pedestrian Alcohol 
impairment (1/0) 

0.670 0.000 -0.024 -0.101 -0.001 0.046 0.081 

Walking along 
Roadway (1/0) 

1.437 0.000 -0.051 -0.217 -0.003 0.098 0.173 

Hit and Run Crash 
(1/0) 

1.211 0.000 -0.043 -0.183 -0.002 0.083 0.146 

Stop and Go Signal 
(1/0) 

-0.300 0.031 0.011 0.045 0.001 -0.021 -0.036 
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Speed limit 60-75 
mph (1/0) 

0.953 0.000 -0.034 -0.144 -0.002 0.065 0.115 

Roadway without 
lights (1/0) 

0.558 0.000 -0.020 -0.084 -0.001 0.038 0.067 

Multilane Road 0.435 0.000 -0.015 -0.066 -0.001 0.030 0.052 

Rural Locality 0.265 0.045 -0.009 -0.040 -0.001 0.018 0.032 

Pedestrian Dash & 
Dart 

0.227 0.049 -0.008 -0.034 -0.001 0.015 0.027 

Male Driver 0.251 0.011 -0.009 -0.038 -0.001 0.017 0.030 

Summary Statistics 

 N   1535    

LL at zero   -2178.184    

LL at convergence   -1734.92    

Pseudo R2   0.2035     

LR χ2 (12)   886.53     

Prob > χ2   0.000     

AIC   3493.84    

BIC   3557.87    

 

In addition to the traditional frequentist approach, Random Forest is estimated to classify the outcomes 
of the pedestrian injury severity in pedestrian crashes at intersections and non-intersections using the 
predictions from multiple decision trees. The dataset for intersection crashes contains 794 observations 
and 90 features, including driver and pedestrian demographic information, vehicle characteristics, 
intersection geometric characteristics, crash characteristics, etc. The random forest model was trained 
on 70% of the data and tested on the remaining 30%. A grid search was performed to determine the 
optimal hyperparameters of the model. The optimal hyperparameters obtained through a grid search 
consist of 100 trees, 3 variables tried for splitting the node, a tree depth of 5, and a sample fraction of 
0.8. The confusion matrices for the training and test datasets are presented in Tables 9 and 10. The 
model results in a prediction accuracy of 84.81% for the test dataset. The performance metrics indicate 
that the model performs exceedingly well on the predictions, with a balanced accuracy of more than 
90% in predicting each of the classes of the dependent variable. The feature importance analysis 
indicates the individual contribution of the predictors in the model accuracy. Figure 10 presents the 
ten most influential predictors in the model with their relative importance. A similar random forest 
model was employed to classify pedestrian injury outcomes in pedestrian crashes at non-intersection 
locations. 

Overall, the random forest analysis yields better predictive performance than the conventional 
frequentist methods and provides valuable insights into the determinants of nighttime pedestrian 
crashes at intersections and non-intersections. By employing random forest for predicting pedestrian 
crashes at intersections, AI-powered systems can assist in identifying high-risk areas, understanding 
contributing factors, and developing targeted interventions to enhance pedestrian safety. 
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TABLE 9. Confusion Matrix for Training Dataset (Intersection Crashes Ntrain = 557) 

Injury Class Fatal 
Injury 

Incapacitating 
Injury 

Non-incapacitating 
Injury 

Possible 
Injury 

No 
injury 

Fatal Injury 59 1 0 0 1 

Incapacitating Injury 0 52 0 0 0 

Non-incapacitating 
Injury 

14 21 211 12 16 

Possible Injury 3 9 1 150 6 

No injury 0 0 0 0 1 

Accuracy 0.8492 

 

TABLE 10. Confusion Matrix for Test Dataset (Intersection Crashes Ntest = 237) 

Injury Class Fatal 
Injury 

Incapacitating 
Injury 

Non-
incapacitating 
Injury 

Possible 
Injury 

No injury 

Fatal Injury 27 1 0 0 0 

Incapacitating Injury 0 24 0 0 0 

Non-incapacitating 
Injury 

8 8 77 5 5 

Possible Injury 2 6 0 72 1 

No injury 0 0 0 0 1 

Accuracy 0.8481 
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Fig. 10: Variable Importance Plot – Pedestrian Crashes on Intersections 

4.6 Conclusion 
This study explores the correlates of nighttime pedestrian crash injury severity in vehicle-pedestrian 
crashes at intersections and non-intersections. The study provided valuable insights into the vehicle’s 
behavioral, infrastructural, and regulatory aspects to pedestrian interactions at intersections and non-
intersection locations. The key factors associated with severe pedestrian injuries in intersections 
include pedestrian alcohol impairments, left-turning vehicles, drivers not yielding to pedestrians, and 
intersection approaches with high-speed limits. At road segments and non-intersections, pedestrian 
crossing at non-crosswalk, dash-and-dart behavior, walking along the road, multilane roads with high-
speed limits, and roadways without proper lights were found to be associated with fatal and severe 
pedestrian injuries in crashes. By estimating a random forest model for predicting pedestrian crashes, 
AI-powered systems can assist in identifying high-risk areas, understanding contributing factors, and 
developing targeted interventions to enhance pedestrian safety. These predictions can inform policy 
decisions, urban planning strategies, infrastructure improvements, and the allocation of resources to 
mitigate the risk of pedestrian crashes and create safer environments for all road users. Based on the 
study results, pedestrian injury severity can be mitigated at both intersections and non-intersections by 
applying pedestrian safety countermeasures such as adequate nighttime lighting, traffic calming 
measures (e.g., speed humps, narrowed lanes, chicanes, etc.), elevated pedestrian crossings, exclusive-
protected pedestrian signal phase, and pedestrian warning signs for drivers and sidewalks on both sides 
of roads. The study findings are expected to assist transportation safety planners in implementing 
roadway-specific pedestrian safety countermeasures to mitigate pedestrian crash injury severity. 
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