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Overview: Research Objectives

Goal - Investigate a new framework for Signal Phase and Timing Control constrained by 
pedestrian safety with multi-agent Reinforcement Learning.

The key objectives are:
1. Explore and process traffic dataset from the Shallowford corridor in Chattanooga, 

collected with Gridsmart cameras.
2. Build a lightweight algorithm for queue estimation based on patrial information, suitable 

for AI application.
3. Develop a decentralized multi-agent learning algorithms that optimizes the signal 

phase and timing plan to reduce vehicular and pedestrian delays.
4. Build a simulation replica of the intersections on the Shallowford corridor to establish 

baseline with actuated controller and show improvement with RL controller.
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Overview-Research Components
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Real world 
Implementation

Data Elements

• City of Chattanooga – Real-
time access to GridSmart 
cameras (working 38 +100 
planned) 

• TDOT - Radar Detector 
Sensors

• Probe Data – WAZE
• Incident Data - TITAN, 

GEARS, DPS, WAZE 
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Analytics

Decentralized 
Multi-Agent-

Learning algorithm
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Optimized SPaT plan 
with X2P elements

SPaT data
Road Geometry
Traffic volume

Simulation/Validation

VR micro simulation with full visualization 

X2P 
communica
tions

Traci-for-
Matlab

SUMO model



‘Digital Twin’ for Regional Mobility, Chattanooga, TN
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Situational Awareness 
from real-time data 
feeds

Simulation, Modeling, 
and Machine Learning

Cyber-Physical control 
actions

Allows observability 
at a regional scale

Identifies and evaluates 
improvements
Demonstrates feasibility/ 
anticipated outcomes 

Algorithmically actuates 
hardware

Significant opportunity as a live testbed for connected fleets, CAVs, V2I, and active control

Problem Statement
• Improve Traffic Throughput
• Reduce “Green Idling”
• Produce a Real-time Adaptive Signal 

Controller via Reinforcement 
Learning and Continuous 
Negotiations between cooperative 
signals

Trained and tested on the CTwin real-
time traffic data from the Shallowford 
Road corridor

Situational Awareness 
from real-time data 
feeds



71 GridSmart Cameras
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Cameras produce 
vehicle-level information
• Time stamp
• Speed
• Length
• Approach direction
• Turn direction

Used with permission from Berres, A. S., LaClair, T. J., Wang, C. (Ross), Xu, H., Ravulaparthy, S., Todd, A., Tennille, S. A., & Sanyal, J. 
(2021). Multiscale and Multivariate Transportation System Visualization for Shopping District Traffic and Regional Traffic. 
Transportation Research Record, 2675(6), 23–37. https://doi.org/10.1177/0361198120970526



Corridor-Level Visualization: Shallowford Road Corridor
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Mall

Mall

Shopping,
Hotels, and 
Restaurants
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Actuated SPAT Control

RL (Adaptive) SPAT Control

Performance Metrics
• Queue Length
• Average Delay
• Maximum Delay

Loop Sensor Data
Queue Length Estimation

Simulation Details



Recorded GRIDSMART Data
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• Signal Timing • Vehicle Data
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Daily Traffic Intensity

www.roadsafety.unc.edu  |  June 20, 2024 10

0-0.5 0.5-1 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5 4.5-5 5-5.5 5.5-6 6-6.5 6.5-7 7-7.5 7.5-8 8-8.5 8.5-9 9-9.5 9.5-1010-10.510.5-1111-11.511.5-1212-12.512.5-1313-13.513.5-1414-14.514.5-1515-15.515.5-1616-16.516.5-1717-17.517.5-1818-18.518.5-1919-19.519.5-2020-20.520.5-2121-21.521.5-2222-22.522.5-2323-23.523.5-24

Time Window [Hrs]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pe
rc

en
ta

ge
 o

f D
ai

ly
 T

ra
ffi

c

0-0.5 0.5-1 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5 4.5-5 5-5.5 5.5-6 6-6.5 6.5-7 7-7.5 7.5-8 8-8.5 8.5-9 9-9.5 9.5-1010-10.510.5-1111-11.511.5-1212-12.512.5-1313-13.513.5-1414-14.514.5-1515-15.515.5-1616-16.516.5-1717-17.517.5-1818-18.518.5-1919-19.519.5-2020-20.520.5-2121-21.521.5-2222-22.522.5-2323-23.523.5-24

Time Window [Hrs]

0

0.01

0.02

0.03

0.04

0.05

Pe
rc

en
ta

ge
 o

f D
ai

ly
 T

ra
ffi

c

I-75S junction with Shallowford road

I-75N junction with Shallowford road



Tues-Thurs Data [50 Samples]
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I-75S junction with Shallowford road

I-75N junction with Shallowford road



Testing Environment
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• Convert GRIDSMART 
Data into SUMO 
coding
• Vehicle Routes
• Signal Timing

• Automatically 
generate necessary 
SUMO programming

12
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Actuated SPAT Control

RL (Adaptive) SPAT Control

Performance Metrics
• Queue Length
• Average Delay
• Maximum Delay

Loop Sensor Data
Queue Length EstimationQueue Length Estimation

Simulation Details

Loop Sensor Data
Queue Length Estimation



Queue estimation from Gridsmart data

14

• Sensors are fisheye lens cameras
• Most traffic data is collected using computer 

vision.
• Signal status is collected from controller
• Detection happens based on defined detection 

zones.



Queue Estimation Results
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Actuated SPAT Control
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RL (Adaptive) SPAT Control

Performance Metrics
• Queue Length
• Average Delay
• Maximum Delay

Loop Sensor Data
Queue Length Estimation

Simulation Details
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RL Strategy
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• 1: Southbound Left
• 2: Southbound Through
• 3: Westbound Left
• 4: Westbound Through
• 5: Northbound Left
• 6: Northbound Through
• 7: Eastbound Left
• 8: Eastbound Through

State: Queue lengths waiting at intersections



RL Strategy
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Action: Choosing the next traffic phase 1:

2:

3:

4:

5:

6:

7:

8:



RL Strategy
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Reward: Values given to agents for taking a specific action at a specific state
Q-Value: Value assigned to state-action pairs based on prior experiences

• 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅, 𝑠𝑠𝑡𝑡𝑖𝑖

• 𝑈𝑈𝑈𝑈𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅 𝑂𝑂𝑈𝑈𝑆𝑆𝑂𝑂𝑂𝑂𝑆𝑆𝑂𝑂 𝑅𝑅𝑅𝑅𝑟𝑟𝑆𝑆𝑅𝑅𝑅𝑅𝑠𝑠/𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅𝑠𝑠 𝑏𝑏𝑆𝑆𝑠𝑠𝑅𝑅𝑅𝑅 𝑅𝑅𝑜𝑜 𝑇𝑇 𝑠𝑠, 𝑆𝑆, 𝑠𝑠′

• 𝑆𝑆𝑅𝑅𝑂𝑂𝑅𝑅𝑅𝑅𝑆𝑆 𝑂𝑂𝑈𝑈𝑆𝑆𝑂𝑂𝑂𝑂𝑆𝑆𝑂𝑂 𝑆𝑆𝑅𝑅𝑆𝑆𝑂𝑂𝑅𝑅𝑜𝑜, 𝑆𝑆𝑡𝑡𝑖𝑖

• 𝐶𝐶𝑆𝑆𝑂𝑂𝑅𝑅𝐶𝐶𝑂𝑂𝑆𝑆𝑆𝑆𝑅𝑅 𝑅𝑅𝑅𝑅𝑟𝑟𝑆𝑆𝑅𝑅𝑅𝑅 𝑅𝑅𝑡𝑡+1𝑖𝑖 𝑠𝑠𝑡𝑡+1𝑖𝑖

• 𝑈𝑈𝑈𝑈𝑅𝑅𝑆𝑆𝑆𝑆𝑅𝑅 𝑄𝑄 − 𝑉𝑉𝑆𝑆𝑂𝑂𝐶𝐶𝑅𝑅𝑠𝑠 𝑄𝑄𝑡𝑡+1 𝑠𝑠𝑡𝑡𝑖𝑖 , 𝑆𝑆𝑡𝑡𝑖𝑖

𝑄𝑄 𝑆𝑆,𝐴𝐴 = 𝑄𝑄 𝑆𝑆,𝐴𝐴 + 𝛼𝛼[𝑅𝑅 + 𝛾𝛾max
𝐴𝐴

𝑄𝑄 𝑆𝑆′,𝐴𝐴 − 𝑄𝑄(𝑆𝑆,𝐴𝐴)]
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Actuated SPAT Control

RL (Adaptive) SPAT Control

Performance Metrics
• Queue Length
• Average Delay
• Maximum Delay

Loop Sensor Data
Queue Length Estimation

Simulation Details

Performance Metrics
• Queue Length
• Average Delay
• Maximum Delay



Traffic flow parameters – 3 levels of traffic volume

www.roadsafety.unc.edu  |  June 20, 2024

Low traffic
High traffic volume

Unusual traffic pattern



Pedestrian study parameters -  2 levels of pedestrian volume
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• Shallowford Road and Gunbarrel 
Road

• Major Arterial Lane
• RL programmed to prioritize 

Density
• Delay Applied to Maintain 

Fairness

• Pedestrian data is generated through a binomial distribution and a census for pedestrian flows at an intersection 
to help represent the concentration of low and moderate levels of pedestrian traffic. 

• Value of these flows were based on the Level of Service(LoS) metric for measuring pedestrian congestion along 
walkways and the assumption that the sidewalks present in the current simulations are approximately 4 feet 
wide. 

• The result is that the pedestrian flows for simulated low and moderate levels result in 10 and 550 pedestrians 
per hour, respectively. 
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Reasonable performance from both RL and actuated controllers – still RL performs at ~19% lower delay 

Low (morning) vehicular traffic + no pedestrian traffic
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Low (morning) vehicular traffic + low pedestrian traffic
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Low (morning) vehicular traffic + low pedestrian traffic
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Low (morning) vehicular traffic + moderate pedestrian traffic
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Low (morning) vehicular traffic + low pedestrian traffic
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High (evening) vehicular traffic + no pedestrian traffic
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High (evening) vehicular traffic + low pedestrian traffic

P Low Pedestrian Traffic
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High (evening) vehicular traffic + low pedestrian traffic
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High (evening) vehicular traffic + moderate pedestrian traffic
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High (evening) vehicular traffic + moderate pedestrian traffic
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Unusually high (modified) vehicular traffic + no pedestrian traffic

Table 12: Delay of Traffic in unusually high traffic scenario with no 
Pedestrian traffic

Net delay difference for unusually high 
traffic scenario with no Pedestrian traffic



www.roadsafety.unc.edu  |  June 20, 2024

Unusually high (modified) vehicular traffic + low pedestrian traffic

Table 12: Delay of Traffic in unusually high traffic scenario with low Pedestrian traffic

Table 12: Delay of Pedestrians in unusually high traffic scenario with low Pedestrian traffic
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Unusually high (modified) vehicular traffic + low pedestrian traffic

Net delay difference for pedestrians in unusually 
high traffic scenario with low Pedestrian traffic

Net delay difference for vehicular traffic in unusually 
high traffic scenario with low Pedestrian traffic
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Unusually high (modified) vehicular traffic + moderate pedestrian traffic

Table 12: Delay of Traffic in unusually high traffic scenario with moderate Pedestrian traffic

Table 12: Delay of Pedestrians in unusually high traffic scenario with moderate Pedestrian traffic
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Unusually high (modified) vehicular traffic + moderate pedestrian traffic

Net delay difference for pedestrians in unusually 
high traffic scenario with moderate Pedestrian 
traffic

Net delay difference for vehicular traffic in unusually 
high traffic scenario with moderate Pedestrian traffic



Exploring decentralization
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Linear Network

Key Issues
• Solving for optimal timing given a set of phases and arrival rates 

takes a relatively large amount of time or compute power.
• This problem does not scale well as the number of intersections in 

an area increases.
Strategy
• Subdivide as much as possible to distribute computational load

# crosses # nodes Format Decentralized Format
1 5 in-line
2 8 in-line 0.911 in-line
2 9 in-line 0.709 in-line
4 12 0.887 grid
4 16 0.515 grid

36 121 20.577 grid

Time To Calculate Cross Streets (s)
Centralized

0.00235
10.962

457.535

• Explicitly include upstream 
“U” and downstream “D” 
agents in problem definition 
for each agent.

• Broadcast and rebroadcast 
information between 
agents to achieve a “system 
collaborative” solution. 



Exploring decentralization
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Grid Network:
1. Based on traffic signal network in Illinois (Springfield)
2. No turning considered EW and NS only
3. Traffic arrives randomly according to Poisson process and 

arrival rates shift midway through test 
4. Compared with Q-learning on same setup (no negotiations)



Synthetic Pedestrian Dataset
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• 300 low resolution images
• 3 traffic camera positions
• 10 character models
• Random variations in location and 

number of pedestrians



YOLO Detection Model
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• Ultralytics YOLOv5 model was 
trained on the synthetic data.

• Provides the number of pedestrians 
at intersection, as well as the 
bounding boxes and confidence 
values for each detected person.



Application on real data
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• The current model is capable of limited cross-domain applicability on real data.

YOLOv5 
Synthetic data 

model



Conclusion
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1. When presented with traffic scenarios recreated through historical data, the RL algorithm outperforms actuated 
controller by attempting to predict the incoming flow of traffic, balance the needs of vehicular drivers with that 
of pedestrians crossing, and making adjustments in an effort to optimize the service rate of vehicular drivers. 

2. In isolated cases, pedestrian crossings may be more delayed, such as when the vehicle volume is excessively 
large, resulting in the penalties of vehicle delays outweighing the delay of pedestrians. But such relative 
weighting is a designer choice, and the performance is tunable by adjusting the model parameters 

3. The model is extremely flexible requires minimal maintenance. It is able to perform with accuracy for each 
period of time presented, with strongly differing traffic patterns.

4. Pedestrian safety is implicitly programmed into the RL algorithm, which along with real-time video-based 
pedestrian detection techniques will enable the deployment of intelligent, safe, reactive signal controllers with 
significantly improved performance.

Future work

1. Considering deployment challenges are the next big step - hardware interfaces and standard protocols need to 
be studied for taking the step towards implementation.
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